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Stability Analysis of Self-Injection-Locked
Oscillators

Heng-Chia Chang, Member, |IEEE

Abstract—This paper addressesthe stability analysis of the self-
injection-locked oscillators. Theanalysisisdeveloped for arbitrary
self-injection feedback loops and illustrated with the specific case
of asimpletime-delay cable. It isshown that the output phase sta-
bility in self-injection-locked oscillators depends on the feedback
loop delay and the types of oscillator circuits, which are repre-
sented by equivalent parallel- or series-resonant oscillator models.
The self-injection-locked technique can also be used to test the os-
cillator circuit model when the self-coupling phase is known. The
theory is verified by using a self-injection-locked GaAs MESFET
oscillator operating at X -band with delay loops.

Index Terms—AM noise, delay line, feedback loop, injection
lock, noise, oscillator, parallel resonant, phase (PM) noise,
resonator, self-injection lock, seriesresonant, stability.

|I. INTRODUCTION

TABLE microwave and millimeter-wave sources in com-
Smunication systems are required for commercia and mili-
tary applications. Similarly, commercial digital communication
systems also put strict constraints on the signal-to-noise ratio
and bit error rate (BER) for high-fidelity information transmis-
sion. Stable oscillators typically use the very high-Q external
resonator in the oscillator circuits, or pass the oscillator output
signal through the high-@ cavity to stabilize the signals and
eliminate the noise components [1]-{4]. The higher effective
@ factor of the oscillator means fewer fluctuations for the os-
cillator output phase and frequency, and the oscillator is more
stable. Another way to reduce the phase noise and stabilize the
oscillator phase and frequency isto injection lock the oscillator
with an external low-noisesignal [5]-{7]. Thenoisereductionin
single one-oscillator and coupled-oscillator arrays phase locked
to the external low phase-noise signal has been verified in the
authors' previous work by theories and experiments [5]-{7].

There is another way to stabilize the oscillators and reduce
the noise by using self-injection-locked technique [8]-{10]. A
part of the oscillator output signal is used to injection lock the
oscillator itself (Fig. 1). The self-injection signal has the same
frequency asthe oscillator, and it is easy for the oscillator to re-
main phase locked all thetime aslong asit satisfies the stability
conditions. The oscillator phase fluctuation or noise can be re-
duced in self-injection-locked oscillators for certain conditions
[11], and the equivalent } factor isalso increased to stabilize the
output signal phase. In the previous literatures, the dependences
of the stability of the self-injection-locked oscillator on the os-
cillator circuit models and feedback delay are not yet addressed.
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Fig. 1. Setup for the self-injection-locked oscillator. The oscillator output
signal goes through the circulator, and then into the input port of the power
divider. Two output ports of the power divider are connected to the spectrum
analyzer and the output load with feedback loop to the circulator, respectively.
A part of the oscillator output undelayed signal isfeedbacked to thecirculator as
the self-injection (delayed) signal. Inthefigure, h(t) isthe self-injection-locked
feedback transfer function in the time domain. In the feedback loop, the delay
cable, high-¢ factor resonator, or amplifier may be used. The attenuator may
be inserted into the loop to change the self-injection signal strength.

In this paper, the author analyzes the stability of the self-injec-
tion-locked oscillators in theory and verify the results by ex-
periments. The author extends the previous work on the stable
mode analysis of coupled oscillators and explores the stability
dependence [12] on the oscillator circuit models and self-injec-
tion signal delay in this paper.

Il. PHASE DYNAMICS OF A SINGLE OSCILLATOR WITH
A SELF-INJECTION SIGNAL

The oscillator circuits can be modeled and classified as either
parallel- or series-resonant oscillators. The parallel-resonant os-
cillator model, shown in Fig. 2(a), has a negative conductance,
anoutput load, and an L—C resonator, and the series-resonant os-
cillator model with negative resistance, an output load, and an
L—C resonator, as shown in Fig. 2(b). The phase dynamics of the
self-injection-locked oscillator in the parallel resonant oscilla-
torsaredifferent from those in series resonant oscillator models,
and al so depend on the coupling phase[12]. Inthefollowing, the
phase dynamics and stability analysiswill bederived for parallel
and series resonant oscillator models.

A. Parallel-Resonant Oscillators

If the oscillator is locked to a low-power injection signal,
the phase relationship between the parallel-resonant oscillator
output signal and injection signal can be described as [1]3],
[12]
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Fig. 2. (a) Equivalent parallel-resonant oscillator model. The model includes
an active device, noise admittance, paralel L—C resonator, output load,
and self-injection signal. The noise admittance characterizes the intrinsic
noise sources in the paralel-resonant oscillator circuits. (b) Equivalent
series-resonant oscillator model. The model includes an active device, noise
resistance, series L-C resonator, output load, and self-injection signal. The
noise resistance characterizes the intrinsic noise sources in the series-resonant
oscillator circuits.

where ¢ and )i,,; are the instantaneous phases of the oscillator
output signa and injection signals, respectively. wy and @ are
the free-running frequency and @ factor of the oscillator, re-
spectively. @ isthe coupling phase or delay from the injection
signal source and the dlave oscillator. p = Aiy; /A isthe injec-
tion strength, and the injection signal Aj,; is normalized to the
oscillator’ s free-running amplitude A.

A steady-state noise-free synchronized state for parallel-res-
onant oscillators satisfies

. o A Winj — Wo Winj — wWo
() =0 +d) = =5 2
sin (g (1) = 0(0) + @) = =2 = T ()
where df/dt = win; IS the injection frequency, wsap =

wo/(2Q)) is haf the 3-dB frequency of the oscillator tank
circuits, Awiocx = pwsap 1S half the entire locking range, and
the circumflex (") denotes a steady-state quantity.

If we extract a part of the oscillator output signal and feed
it through a feedback with the transfer function [the frequency
response is H (w) and the time-domain responseis h(¢)] shown
in Fig. 1 and then into the oscillator injection port, the phase
difference in asinusoidal term can be written as ¢, (t) + ¢ —
0(t) = Oimi(t) — 0(t) = 6(t) = h(t) — O(t)= 6t — 1) —
6(t), where (x) isthe convolution symbol and 7 is the feedback
delay time. Here, the feedback transfer function (H (w) or h(t))
only introduces the phase or time delay into the signal phase,
but does not change the signal frequency. Therefore, the phase
relationship of (1) becomes

d (A, (1))

o = <w0 - M) — pwsan sin (AG,(1))  (3)

dt

where A6, (t) = (t) —6(t —T') and w isthe carrier frequency.
The subscript p denotes the parallel-resonant oscillator.
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Differentia eguation (3) is an implicit equation of 4(¢), and
one heeds to use the numerical method to find the exact steady
state solution with the initial value 6,. However, the locking
range pwsap < wo in real self-injection-locked oscillators and
the steady-state phase can be approximated by 8(¢) = wot + 6.

B. Series-Resonant Oscillators

If the oscillator islocked to alow-power injection signal, the
phase relationship between the series-resonant oscillator output
signal and injection signal can be described as[12]

do(t)

a wo — P55~ sin (1/)inj (t) —6(t) + ‘I)) 4

wo
2Q
where ¢ and i,; are the instantaneous phases of the oscillator
output signal and the injection signals, respectively. wo and @
arethefree-running frequency and ¢} factor of the oscillator, re-
spectively. ¢ is the coupling phase or delay from the injection
signal source and the dlave oscillator. p = Aiy; /A isthe injec-
tion strength and the injection signal Aj,; is normalized to the
oscillator’ s free-running amplitude A.

A steady-state noise-free synchronized state for series-reso-
nant oscillatorsis

[ A (Winj — wo) (Winj — wo)
wi(t) —0) + @) = — =—
o (1/) i(8) = 00) + ) PwW3dB AWigek
where df/dt = wiy; IS the injection frequency, wsaz =

wo/(2Q)) is half the 3-dB frequency of the oscillator tank
circuits, Awioax = pwsap IS half the entire locking range, and
the circumflex (") denotes a steady-state quantity.

If we extract a part of the oscillator output signal and feed
it through a feedback loop with the transfer function (the
frequency response is H(w) and the time-domain response is
h(t), shown in Fig. 1) and then into the oscillator injection
port, the phase difference in the sinusoidal term can be written
8 1)uug() +  — B(t) = Bing () — B(t) = 6(t) * h(t) — 6(t)=
8(t —T) — 8(t), where (x) is the convolution symbol and T is
the feedback delay time. Here, the feedback transfer function
[H(w) or h(t)] only introduces the phase or time delay into
the signal phase, but does not change the signal fregquency.
Therefore, the phase relationship of (4) becomes

d(AB(t)) de(t—T) .

T = | wo— T +Pw3dB S (AHS (t)) (6)
where A6, (¢) = 6(t) — 6(t — T') and wy isthe carrier frequency.
The subscript s denotes the series-resonant oscillators.

I1l. STABILITY ANALYSIS OF THE
SELF-INJECTION-LOCKED OSCILLATORS

The stability of the solutions to the phase dynamics can be
determined by linearizing the equations around the fixed points.
One can assume that the steady-state solutions to (3) and (6)
are A, and Ad,, respectively, which are the phase difference
(or phase delay) between the oscillator output signal phase and
the injection signal phase at the injection port for parallel and
series-resonant oscillators, respectively.
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The stability analysis to the solution of phase dynamics for
self-injection-locked oscillators from (3) or (6) can be written
as

A20+9) _ (d“gt b —w0> T pwsap Sin(AG+S)  (7)
where Af = 6(t) — 6(t — T) is the steady-state phase differ-
ence between theinjection signal phase and the oscillator output
phase, and 6 isthe small fluctuation of the phase difference. The
upper signisfor parallel-resonant oscillators and the lower sign
is for series-resonant oscillators.

The purpose of self-injection locking is to stabilize the os-
cillator frequency and reduce the phase fluctuation. One may
assume that the self-injection-locked oscillator has very small
output frequency change and

dé(t —T
The stability equation (7) for the oscillators becomes
dé ;
P Fpwsap(cos Af) - 6 ©)

wherethe upper signisfor parallel oscillatorsand thelower sign
isfor series oscillators.

The phase stability of the self-injection-locked oscillator is
determined by the phase delay - Adin (9). For parallel oscillators,
if cosAG > 0 (—n/2 < A < 7/2), the fluctuation of the
phase difference between the oscillator output and self-injection
signal approaches zero, and the phase difference is stable. If
cos AG < 0 (1/2 < A < 37/2), the fluctuation of the phase
difference between the oscillator output and self-injection signal
increases with time. The self-injection locking cannot stabilize
the oscillator phase or frequency itself under this condition.

For series oscillators, if cos A < 0 (n/2 < A < 3w /2),
the fluctuation of the phase difference between the oscillator
output and self-injection signal approaches zero, and the phase
differenceis stable. In real self-injection-locked oscillators, the
locking range pwsan < wo, the steady-state phase can be ap-
proximated by 6(¢) ~ wot +6g. If cos A8 > 0 (—7/2 < Af <
7 /2), the fluctuation of the phase difference between the oscil-
lator output and self-injection signal increaseswith time, and the
phase difference is unstable. The self-injection locking cannot
stabilize the oscillator phase or frequency itself under this con-
dition.

The above stability analysis results are summarized in Fig. 3.
The stability of the self-injection-locked oscillators depends on
the feedback loop delay and the types of the oscillators, which
are represented by an equivalent parallel- or series-resonant cir-
cuit model. Theresults are similar to the mode stability analysis
of parallel-coupled phase-locked oscillator arrays [12], where
the stable steady-state phase differences between the oscillator
elements depend on the coupling phase and oscillator circuit
models.

IV. EXPERIMENTAL RESULTS

An oscillator was used for the experimental verification of
this paper’ s theory. The oscillator is a varactor-tuned MESFET
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Fig. 3. Stahility conditions between the equivalent oscillator model and loop
phase. For the parallel-resonant oscillators, the stable output phase requires
—90° < Af < 90° (i.e., cos Ad > 0). For series-resonant oscillators, the
stable output phase requires 90° < A < 270° (i.e, cos Af < 0).

Fig. 4. Experimental setup of the self-injection-locked oscillator with a
delay-line cable in the feedback loop. The attenuator can be inserted into the
feedback loop to change the self-injection signal strength.

voltage-controlled oscillator (VCO) with a nominal tuning
range of 89 GHz. The VCO uses an NE32184A packaged
MESFET and M/A-COM 46600 varactor diode, and is fab-
ricated on a Rogers Duroid board 5880 (¢, = 2.2) with a
thickness of 0.787 mm. The output power of the oscillator
is Fp = 5.5 dBm. The @ factor of the oscillator can be
decided from the injection-locking range [5], [6], and Q@ = 17
at w9 = 8.5 GHz. The oscillator is the same design as the
parallel-resonant oscillator in coupled oscillator arrays with
the coupling phase ® = 0 or 2#. The oscillator is parallel
resonant, which is verified by the coupled oscillator array with
an antenna array by testing its radiation patterns [12].

The measurement setup shown in Fig. 4 is similar to Fig. 1,
and one output port of the power divider is connected to the
Agilent Spectrum Analyzer E4407B with phase-noise measure-
ment personality (option 226) [13]. Agilent E4407B can make a
log plot of phase-noise measurement in ten successive spectrum
sweeps. The stability of the oscillator output phase is related to
the phase noise. From the previous derivations, we know the
phase noise is indeed the ensemble average of power spectral
density of the phase fluctuations. If the oscillator is very stable,
its phase noise will be very low and the phase fluctuation is also
very small [5], [6]. If themeasured signal hasenough residual or
unstable FM that the resolution bandwidth misses the peak on
some of the sweep, the measured power will be incorrect and
the trace will have discontinuities or an abrupt change of the
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Fig. 5. Measured phase noise of the free-running parallel-resonant oscillator
and the same oscillator with a self-injection-locked signal (total loop delay of
15.7 ns and self-injection signal 7 dBm lower than the oscillator free-running
output power P, = 5.5 dBm). The free-running frequency of the oscillator
is 8.193 GHz, and is shifted from 8.193 to 8.150 GHz after applying the
self-injection signal. The frequency shift is due to the change of the oscillator
output load. The phase noise is reduced after self-injection locking, as
compared to the phase-noise trace of the free-running oscillator.

dlope [13]. Here, we will use this property to test the stability
of self-injection-locked oscillators for different feedback loop
delays. We also use time-domain reflectometer (TDR) to test
the delays of the individual components in the loop, including
the cable connecting the oscillator and circulator, delay within
circulator ports, connection between the circulator and power
divider, delay within power-divider ports, and feedback cable
between the power divider and circulator, and then add up those
delays in the feedback loop for the total delay. We can put dif-
ferent attenuators in the feedback |oop to change the self-injec-
tion signal strength, and observe the self-injection-locked oscil-
lator output spectrum while keeping the whole loop to satisfy
the stability conditions.

First, we want to test the phase noise of the free-running os-
cillator without any self-injection signal. One output port of
the power divider is connected to the spectrum analyzer, and
the other output port is terminated with a 50-2 load. The self-
injection signal port of the circulator is also terminated with
a 50-Q load. The free-running frequency of the oscillator is
8.193 GHz, and the measured phase-noise result is shown in
Fig. 5. The curve shown in this figure is the smoothed one. In
typical phase-noise measurements, there are often some spikes
on the phase-noi se traces caused by the power-supply instability
or the external interferences. The noise or spike reduction onthe
phase-noise traces can be accomplished by using the smoothing
or averaging or filtering function in the phase-noise measure-
ment personality (option 226) [13].

When we apply the self-injection signal on the oscillator,
there is a dight frequency shift from 8.193 to 8.150 GHz due
to the change of oscillator output load. Here, we select two ca
blesof different lengthin thefeedback loop, and havetotal delay
time of 4.0 and 15.7 nswith thetotal insertion lossof 7.0 dBm at
8.150 GHz. For thetotal loop delay 15.70 ns, cos Af,, = 0.9603
a the frequency of 8.150 GHz, and the phase-noise result is
shown in Fig. 5. We find the output spectrum is stable for the
loop delay of 15.7 ns (i.e., cos Af, > 0) and the phase noise is
less than the free-running one (Fig. 3) [11]. This confirms our
stability analysis.

For the total loop delay of 4.0 ns (i.e., cos Aép < 0), the
phase-noise results measured at different times are shown in
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Fig. 6. Measured phase noise of the free-running parallel-resonant oscillator
and the same oscillator with a self-injection-locked signal (total loop delay of
4.0 ns and self-injection signal 7 dBm lower than the oscillator free-running
output power Py, = 5.5 dBm) tested at different times. The oscillator frequency
is shifted from 8.193 to 8.150 GHz after applying the self-injection signal. The
frequency shift is due to the change of the oscillator output load. The output
phase noise is noisy after self-injection locking, as compared to the phase-noise
trace of the free-running oscillator. Thereis somediscontinuity or abrupt change
of the slope in the trace due to the residual or unstable FM in the signal. The
result shows the oscillator output phase is unstable under such self-injection
condition.

Fig. 6. The phase noise of the self-injection-locked oscillator
is unstable and noisy. The phase-noise results also have discon-
tinuities or abrupt change of the slope in the traces. For all the
phase-noi se measurements here, we keep the same output power
from the self-injection-locked oscillator setup to the spectrum
analyzer. Thisagain confirms our oscillator phase stability anal-
ysis of self-injection-locked oscillators.

V. CONCLUSIONS

Stability analysis in a self-injection-locked oscillator has
been derived. The stability analysis is developed for different
oscillator models and the feedback loop phase. The stability
analysisis similar to that of coupled oscillator arrays, and we
use the perturbation analysis around the steady states of the
phase dynamics. The output parallel-resonant oscillator phase
is stable for total loop phase cos AH > 0, and the series-reso-
nant oscillator is stable for total Ioop phase cos Af, < 0.The
self-injection locking can also be used to test the oscillator
circuit model when the self-coupling phase is known.

The theory is verified by using a self-injection-locked GaAs
MESFET oscillator operating at the X -band with delay loops.
We use the phase-noise properties to test the stable self-in-
jection-locked oscillator. If the measured signal has enough
residua FM that the resolution bandwidth misses the peak
on some of the sweep, the measured power will be incorrect
and the trace will have discontinuities or an abrupt change of
the slope [13]. We use two different loop phases (two cables
of different length) and measure the phase noise. We find the
phase-noise result of the parallel-resonant oscillator is stable
for the loop with cos Aép > 0, but unstable and noisy and has
discontinuities or an abrupt change of the slope on the traces
with cos Af, < 0. Those confirm our stability analysis.

There are several aspects of the stability analysis not treated
in this paper. The first is the influence of amplitude dynamics
and AM-to-PM conversion. The amplitude of the oscillator is
assumed constant and those effectsare neglected in thispaper. In
the derivation of the phase perturbation around the steady states
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in self-injection-locked oscillators, we use the assumption that
theloop phaseis constant with respect to time. However, thereis
still some small variation of the oscillator frequency due to the
oscillator output load change or intrinsic oscillator phase-noise
sources. A part of the oscillator output signal is passed through
thefeedback loop and fed back to the oscillator itself, and triesto
stahilize the frequency and phase dynamically for certain feed-
back delay ranges. If the loop phase is not constant with respect
totime, the assumption of the constant |oop phasefor theself-in-
jection-locked oscillator will not be valid. We should study the
effects of the oscillator frequency shift and loop phase variation
carefully in the future.
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